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What is Ptychography?

An unknown specimen is illuminated by a localized illumination
function resulting in an exit-wave whose intensity is observed.

A ptychography dataset is a series of these observations, each of
which is obtained by shifting the illumination function to a different
position relative to the specimen. Neighbouring illumination regions
overlap.

Given a ptychographic dataset, the blind ptychography problem is to
simultaneously reconstruct the relative phase of the specimen and
illumination function.

Figure : An illumination function (left), specimen (center), and exit-wave (right).
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What is Ptychography?

The mathematical model is:

x ∈ Cn×n is the unknown illumination function,
y ∈ Cn×n is the unknown specimen.
z = (z1, . . . , zm) ∈ (Cn×n)m is an m-tuple of diffraction patterns.
Sj : Cn×n → Cn×n is a shift map with Sj(x) corresponding to the
position of the illumination function for the j th diffraction pattern.
The elements of the triple (x , y , z) are related by:

Sj(x)� y = zj for j = 1, 2, . . . ,m.

Figure : An example of Sj(x)� y = zj with Sj localising “x” to the girl’s head.
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What is Ptychography?

In a ptychography experiment we observe the m-matrices

b1, . . . , bm ∈ Rn×n
+ ,

where bj , for j = 1, 2, . . . ,m, are given by

bj = | F(zj)| = | F(Sj(x)� y)|.

Here F is the 2D Fourier transform, and | · | is taken element-wise.

The blind ptychography problem is:

Given b1, b2, . . . , bm ∈ Rn×n
+ reconstruct the triple (x , y , z).

Ill-posed, inverse problem with many solutions ⇒ hopeless without a
priori knowledge.
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Two Algorithms in the Literature

Maiden & Rodenburg proposed:

With update functions:

Thibault et al. proposed:

On computing (6):
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Our Framework

Perfectly good algorithmic schemes, which have been shown to work.
Not clear what (optimisation?) problem the algorithms solve.

Cannot be cast as projection-type algorithms solving feasibility
problems, although they seem closely related.

We considered the following optimisation problem:

min F (x , y , z) :=
m∑
j=1

‖Sj(x)� y − zj‖2

s.t. x ∈ X = {x : ‖x‖∞ ≤ Mx , x |Icx = 0},
y ∈ Y = {y : ‖y‖∞ ≤ My},
z ∈ Z = {z : | F(zj)| = bj for j = 1, 2, . . . ,m},

(P)

where Mx ,My ∈ R are bounds, and Ix is an index set (support of x).
Separable constraint sets coupled through a “nice” objective
function.
(P) is equivalent to the formally unconstrained problem:

min Ψ(x , y , z) := F (x , y , z) + ιX (x) + ιY (y) + ιZ (z),

where ιC (w) is the indicator function of the set C which takes the
value 0 if w ∈ C , and +∞ if w 6∈ C .
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A Naive Approach: Alternating Minimisation

Alternating Minimisation Algorithm (over three blocks):

Initialization. Choose
(
x0, y0, z0

)
∈ X × Y × Z .

General Step. (k = 0, 1, . . .)

1. Select xk+1 ∈ arg min
x∈X

F (x , y k , zk),

2. Select y k+1 ∈ arg min
y∈Y

F (xk+1, y , zk),

3. Select zk+1 ∈ arg min
z∈Z

F (xk+1, y k+1, z).

What’s involved? Roughly speaking, to compute Step 1 we must
minimise the terms of the form ‖Sj(x)� yk − zkj ‖2. If this is zero, then

Sj(x)� yk = zkj =⇒ Sj(x) = zkj � yk =⇒ x = S−1
j (zkj � yk).

Inverting Sj is stable (just “un-shift”).

Division by yk is unstable (divide by zero)

Similar observations apply to Step 2.

Step 3 is unstable but there are regularisation schemes in the literature.
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PHeBIE: Proximal Block Implicit-Explicit Algorithm

We regularise doing the following to F :

Linearising Steps 1 & 2. For Step 1, we have

F (x , yk , zk) −→ F (xk , yk , zk) + 〈x − xk ,∇xF (xk , yk , zk)〉.

Adding a proximal term to Steps 1, 2 & 3. For Step 1, such a term
looks like

+
αk

2
‖x − xk‖2,

where αk > 0 is dependent on yk and zk .

The regularised version of Step 1 becomes:

xk+1 ∈ arg min
x∈X

{〈
x − xk ,∇xF (xk , yk , zk)

〉
+
αk

2
‖x − xk‖2

}
.

The other steps are similar.
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PHeBIE: Proximal Block Implicit-Explicit Algorithm

Proximal Block Implicit-Explicit Algorithm:

Initialization. Choose α, β > 1, γ, ηx , ηy > 0,
(
x0, y0, z0

)
∈ X ×Y × Z .

General Step. (k = 0, 1, . . .)

1. Set αk = αmax{Lx
(
yk , zk

)
, ηx} and select

xk+1 ∈ PX

(
xk − 2

αk

m∑
j=1

S−1
j (y k)� S−1

j

(
y k − zkj

))
,

2. Set βk = βmax{Ly
(
xk+1, zk

)
, ηy} and select

y k+1 ∈ PY

(
y k − 2

βk

m∑
j=1

Sj(xk+1)�
(
Sj(x

k+1)− zkj

))
,

3. Select, for j = 1, 2 . . . ,m,

zk+1
j ∈ PZ

([
2

2 + γk
Sj(x

k+1)� y k+1 +
γk

2 + γk
zkj

]m
j=1

)
.

Here Lx(yk , zk) (resp Ly (xk+1, zk)) denotes the partial Lipschitz
constant of ∇xF (x , yk , zk) (resp. ∇yF (xk+1, y , zk)), and the projection
onto a set C is given by

PC (w) := arg min
u∈C

‖u − w‖2.
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PHeBIE: Convergence Theorem

Theorem (Hesse–Luke-Sabach–T, 2015)

Let {(xk , yk , zk)}k∈N be a sequence generated by PHeBIE for blind
ptychography problem. Then the following hold.

1 The sequence {(xk , yk , zk)}k∈N has finite length. That is,
∞∑
k=1

∥∥(xk+1, yk+1, zk+1)− (xk , yk , zk)
∥∥2
<∞.

2 The sequence {(xk , yk , zk)}k∈N converges to point (x∗, y∗, z∗)
which is a critical point of the function Ψ. That is,

0 ∈ ∂Ψ(x , y , z) = ∇F (x∗, y∗, z∗) + ∂ιX (x∗) + ∂ιY (y∗) + ∂ιZ (z∗),

where ∂(·) denotes the limiting Fréchet subdifferential.

For u in the domain of f , the limiting Fréchet subdifferential is given by

∂f (u) :=
{
v : ∃uk → u, f (uk ) → f (u), vk → v, vk ∈ ∂̂f (uk )

}
, where ∂̂f (u) =

v : lim inf
w 6=u
w→u

f (w) − f (u) − 〈v, w − u〉

‖w − u‖
≥ 0

 .
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PHeBIE: Example
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PHeBIE: Convergence Theorem (cont.)

Proof Sketch.

The proof has three steps:

1 (Sufficient decrease) Use properties of the algorithm to establish
that the sequence {F (xk , yk , zk)}k∈N is decreasing, converges to
some F ∗ > −∞, and that

∞∑
k=1

‖(xk+1, yk+1, zk+1)− (xk , yk , zk)‖2 <∞.

2 (Subdifferential bound) Use properties of the algorithm to show that

‖wk+1‖ ≤ κ‖(xk+1, yk+1, zk+1)− (xk , yk , zk)‖,

for some wk+1 ∈ ∂Ψ(xk+1, yk+1, zk+1) and κ > 0.

3 To establish convergence of {(xk , yk , zk)}k∈N to a critical point, we
appeal to a result of Bolte, Sabach & Teboulle, 2014. Here the
important ingredient is that Ψ satisfied the Kurdyka– Lojasiewicz
(KL) Property which gives Cauchyness of {(xk , yk , zk)}k∈N.
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The Kurdyka- Lojasiewicz (KL) Property

Let f : Rd → (−∞,+∞] be proper and lsc. For η ∈ (0,+∞] define

Cη ≡ {φ : [0, η)→ R+ : ϕ(0) = 0, ϕ′(s) > 0 for all s ∈ (0, η)} .

The function f is said to have the KL property at u ∈ dom ∂f if there
exists a neighbourhood U of u and a function ϕ ∈ Cη, such that, for all

u ∈ {u ∈ U : f (u) < f (u) < f (u) + η},

it holds that
ϕ′ (f (u)− f (u)) dist(0, ∂f (u)) ≥ 1.

Why is the KL property useful? It holds for many important nonconvex
optimisation problems.

In particular, any proper, lsc, semi-algebraic function is satisfies the KL
property everywhere in its domain.

R. Hesse, D.R. Luke, S. Sabach, M.K. Tam Reconstruction Algorithms for Blind Ptychographic Imaging



The Kurdyka- Lojasiewicz (KL) Property

Let f : Rd → (−∞,+∞] be proper and lsc. For η ∈ (0,+∞] define

Cη ≡ {φ : [0, η)→ R+ : ϕ(0) = 0, ϕ′(s) > 0 for all s ∈ (0, η)} .

The function f is said to have the KL property at u ∈ dom ∂f if there
exists a neighbourhood U of u and a function ϕ ∈ Cη, such that, for all

u ∈ {u ∈ U : f (u) < f (u) < f (u) + η},

it holds that
ϕ′ (f (u)− f (u)) dist(0, ∂f (u)) ≥ 1.

Why is the KL property useful? It holds for many important nonconvex
optimisation problems.

In particular, any proper, lsc, semi-algebraic function is satisfies the KL
property everywhere in its domain.

R. Hesse, D.R. Luke, S. Sabach, M.K. Tam Reconstruction Algorithms for Blind Ptychographic Imaging



Exploiting Block Structure

The present algorithm:

Alternatively minimizes w.r.t. three blocks: X , Y and Z .

At each iteration the “step-size” is inversely proportional to a parital
Lipschitz constant. For instance,

Lx(y k , zk) = 2

∥∥∥∥∥
m∑
j=1

S∗j (y k � y k)

∥∥∥∥∥
∞

.

When X or Y has separable structure, they can be decomposed as

X ≡ X1 × X2 × · · · × XN , Y ≡ Y1 × Y2 × · · · × YM .

Algorithm variant: alternatively minimizes w.r.t. (N + M + 1)-blocks.

The jth “sub-block”, Xj , has partial Lipschitz constant

2

∥∥∥∥∥∥
(

m∑
j=1

S∗j (y k � y k)

)∣∣∣∣∣
Xj

∥∥∥∥∥∥
∞

.

? More sub-blocks → small sub-blocks → small constant → larger step-size.

Sub-blocks can be updated sequentially or in parallel. In both cases, an
analogous convergence theorem holds (see the paper for details).
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Explaining Maiden & Rodenburg

In our framework, we can interpret Maiden & Rodeburg’s algorithm as
alternating minimisation w.r.t. the blocks (in order)

X1,Y1,Z ,X2,Y2,Z ,X3,Y3,Z , . . . ,X1,Y1,Z , . . .

where sub-blocks Xj and Yj correspond to restrictions related to the
support of the jth exit wave.

Moreover, Maiden & Rodenburg’s update rules:

are what is obtain by by taking X = Y = Cm×m. Note that the
“normalisations” are precisely the partial Lipschitz constants!
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Explaining Thibault et al.

If it were not a difference-map algorithm, Thibault et al. could be interpreted
as the two block alternating proximal linearisation minimisation of:

Initialization. Choose
(
x0, y 0, z0

)
∈ X × Y × Z .

General Step. (k = 0, 1, . . .)

1. Select (xk+1, y k+1) ∈ arg min
(x,y)∈X×Y

F (x , y , zk),

2. Select zk+1 ∈ arg min
z∈Z

F (xk+1, y k+1, z).

However Step. 1 is not so easy to solve:
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z∈Z

F (xk+1, y k+1, z).

So the actual computation is the following heuristic approximation to 1.:

Input. (x̂0, ŷ 0) := (xk , y k) ∈ X × Y , zk , and L ∈ N.
General Step. (l = 0, 1, . . . , (L− 1))

1a. Select x̂ l+1 ∈ arg min
x∈X

F (x , ŷ l , zk),

1b. Select ŷ l+1 ∈ arg min
y∈Y

F (x̂ l+1, y , zk),

In our framework, this is alternating minimisation w.r.t. the blocks (in order)

X ,Y ,X ,Y , . . . ,X ,Y ,Z ,X ,Y ,X ,Y , . . . ,X ,Y ,Z , . . . .
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Concluding Remarks and Ongoing Work

In summary:

We presented a ptychography algorithm with a clear mathematical
framework.

Under practically verifiable assumption, it is provably convergent to
critical points of a function Ψ.

The flexibility of the framework allows interpretation of current
state-of-the-art ptychography algorithms.

Ongoing and future work:

Is there a useful characterisation of the critical points of of Ψ?

Can the algorithm structure be exploited on specific architectures?

For further details see:

Proximal Heterogeneous Block Implicit-Explicit Method and Application

to Blind Ptychographic Diffraction Imaging with R. Hesse, D.R. Luke and

S. Sabach. SIAM J. on Imaging Sciences, 8(1):426–457 (2015).
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