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What is Ptychography?

@ An unknown specimen is illuminated by a localized illumination
function resulting in an exit-wave whose intensity is observed.

@ A ptychography dataset is a series of these observations, each of
which is obtained by shifting the illumination function to a different
position relative to the specimen. Neighbouring illumination regions
overlap.

@ Given a ptychographic dataset, the blind ptychography problem is to
simultaneously reconstruct the relative phase of the specimen and
illumination function.

Figure : An illumination function (left), specimen (center), and exit-wave (right).
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What is Ptychography?

The mathematical model is:
@ x € C"™" is the unknown illumination function,
@ y € C"™" is the unknown specimen.
0 z=(z1,...,2zm) € (C"™™M™ is an m-tuple of diffraction patterns.
@ 5 : C"" — C"™ " is a shift map with 5;(x) corresponding to the
position of the illumination function for the j™ diffraction pattern.
@ The elements of the triple (x,y,z) are related by:

Six)oy=2z for j=1,2,...,m.

Figure : An example of Sj(x) ® y = z; with §; localising “x" to the girl's head.
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What is Ptychography?

In a ptychography experiment we observe the m-matrices
bi,...,bm e R,
where b;, for j =1,2,...,m, are given by
bj = [F(Z)| = |F(5(x) @ y)l.
Here F is the 2D Fourier transform, and | - | is taken element-wise.

The blind ptychography problem is:

Given by, by, ..., by € R7*" reconstruct the triple (x, y, z).

o lll-posed, inverse problem with many solutions = hopeless without a
priori knowledge.
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Two Algorithms in the Literature

Maiden & Rodenburg proposed:
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Two Algorithms in the Literature

Maiden & Rodenburg proposed: Thibault et al. proposed:

F_ A
" Hep(¥) ;= 5 = ply). (4)
Ao-of0 o)+ Y20 = e -0 ®
ey Wopr = P+ T2 (Fi) — W)~ Tl (), ®

) by Py(r-Rgg)

Forward
transform,

On computing (6):

Replace modulus
with
measurement

Inverse
transfon

win

Py

SlPe -2
. O @+ Y+
by = O EHDC A ®

2510(r + 1))

In the event the probe P is_already known, the overlap
projection is given by (6), where O is computed with Eq. (7). If P
also needs to be retrieved, both Egs. (7) and (8) need to be
simultaneously solved. While the system cannot be decoupled
analytically, applying the two equations in turns for a few
iterations was observed to be an efficient procedure to find the

minimum. Within the reconstruction scheme, initial guesses for P
and O are readilv available from the previous iteration—avart
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Our Framework

o Perfectly good algorithmic schemes, which have been shown to work.
o Not clear what (optimisation?) problem the algorithms solve.
o Cannot be cast as projection-type algorithms solving feasibility
problems, although they seem closely related.
@ We considered the following optimisation problem:

min  F(x,y,2) ZHS(X oy -zl

s.t. XGX:{X: ||XHOO§MX7 X|H§:O}a (P)
yeVY={y:llylle <My},
zeZ={z:|F(z)| =bjforj=1,2,...,m},
where M,, M, € R are bounds, and I, is an index set (support of x).
@ Separable constraint sets coupled through a “nice” objective
function.
o (P) is equivalent to the formally unconstrained problem:

min W(x,y,z):= F(x,y,z) + tx(x) + ey (y) + tz(2),

where ¢c(w) is the indicator function of the set C which takes the
value 0 if w € C, and +o0 if w & C.
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A Naive Approach: Alternating Minimisation

Alternating Minimisation Algorithm (over three blocks):

Initialization. Choose (x°,y%.2°) e X x Y x Z.
y
General Step. (k=0,1,...)
1. Select X" argmin F(x, y*, 2),
g
xeX
2. Select y*™ e argmin F(x*™y,2"),
yey
3. Select 2 € argmin F(x*1, y 1 2).
zeZ
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A Naive Approach: Alternating Minimisation

Alternating Minimisation Algorithm (over three blocks):

Initialization. Choose (x°,y%.2°) e X x Y x Z.
y
General Step. (k=0,1,...)
1. Select X" argmin F(x, y*, 2),
o
Xe
2. Select y*™ e argmin F(x*™y,2"),
yey
3. Select 2 € argmin F(x*1, y 1 2).
zeZ

What's involved? Roughly speaking, to compute Step 1 we must

minimise the terms of the form ||S;(x) ® yX — zK||2.

# If this is zero, then

Si(x) oyk= ij = Sj(x) = zjk QYK — X = SJ-_l(zjk @ Yk)-

o Inverting S; is stable (just “un-shift").
@ Division by yj is unstable (divide by zero)
@ Similar observations apply to Step 2.

@ Step 3 is unstable but there are regularisation schemes in the literature.
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PHeBIE: Proximal Block Implicit-Explicit Algorithm

We regularise doing the following to F:
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PHeBIE: Proximal Block Implicit-Explicit Algorithm

We regularise doing the following to F:
@ Linearising Steps 1 & 2. For Step 1, we have

F(X7yk,zk) — F(Xk,yk,zk) + (x— xk,VXF(xk7yk,zk)>.
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PHeBIE: Proximal Block Implicit-Explicit Algorithm

We regularise doing the following to F:
@ Linearising Steps 1 & 2. For Step 1, we have

F(X7yk,zk) — F(Xk,yk,zk) + (x— xk,VXF(xk7yk,zk)>.

@ Adding a proximal term to Steps 1, 2 & 3. For Step 1, such a term
looks like

k
«
s PP

where o > 0 is dependent on y* and z*.
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PHeBIE: Proximal Block Implicit-Explicit Algorithm

We regularise doing the following to F:
@ Linearising Steps 1 & 2. For Step 1, we have

F(X7yk,zk) — F(Xk,yk,zk) + (x— xk,VXF(xk7yk,zk)>.

@ Adding a proximal term to Steps 1, 2 & 3. For Step 1, such a term
looks like

K
o k

+7HX — x|,

where o > 0 is dependent on y* and z*.

The regularised version of Step 1 becomes:

K
x*1 € arg min {(x — XK,V F(xM, %, 29) + L x— xk||2} .
xeX 2

The other steps are similar.
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PHeBIE: Proximal Block Implicit-Explicit Algorithm

Proximal Block Implicit-Explicit Algorithm:

Initialization. Choose o, 3 > 1, 7,1, 1, > 0, (x%,y%,2°) e X x Y x Z.
General Step. (k=0,1,...)

1. Set af = amax{L (y*,2"), 7} and select

e py <Xk B iisil(ﬁ) 05 (yk _ij>> ’

j=1

2. Set 8% = Bmax{L, (x*™1,z¥) 1 ;y} and select
e )

3. Select, for j=1,2..., m,

2

k+1 k+1 k+1 Yk k

z; " eP Si(x O] + ——2z .
! Z<{2+’Yk J( ) Y 2+7kj]j—>

Here L, (yk, z¥) (resp L,(x**1,z¥)) denotes the partial Lipschitz
constant of V,F(x,y*,z¥) (resp. V,F(xk*1 y, z¥)), and the projection
onto a set C is given by

Pc(w) := argmin ||u — w|°.
ueC
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PHeBIE: Convergence Theorem

Theorem (Hesse—Luke-Sabach-T, 2015)

Let {(x*,y*, z¥)}xen be a sequence generated by PHeBIE for blind
ptychography problem. Then the following hold.

@ The sequence {(x*, y*,z¥)}1en has finite length. That is,
oo
2
Z||(Xk+17yk+17zk+1)_(Xk,yk’zk)H < 0.
k=1

@ The sequence {(x*, y*, z¥)}xen converges to point (x*,y*,z*)
which is a critical point of the function W. That is,

0€0V(x,y,z) = VF(x*,y*,2") + Ox(x*) + Ovy (y*) + Ovz(z¥),

where J(-) denotes the limiting Fréchet subdifferential.

For u in the domain of f, the limiting Fréchet subdifferential is given by

of(w) = {v: 3K = u, fF) = ), v o v, K € RN} where BF(u) = {V im o W > o} .
w—u
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PHeBIE: Example
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PHeBIE: Convergence Theorem (cont.)

Proof Sketch.

The proof has three steps:
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PHeBIE: Convergence Theorem (cont.)

Proof Sketch.

The proof has three steps:

@ (Sufficient decrease) Use properties of the algorithm to establish
that the sequence {F(x*, yX,z*)} e is decreasing, converges to
some F* > —oo, and that

o
DMKy 2K — (3K y K, 29| < oo
k=1
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PHeBIE: Convergence Theorem (cont.)

Proof Sketch.

The proof has three steps:

@ (Sufficient decrease) Use properties of the algorithm to establish
that the sequence {F(x*, yX,z*)} e is decreasing, converges to
some F* > —oo, and that

o0
DGy, 2 — (5K, y K 2P < oo
k=1

@ (Subdifferential bound) Use properties of the algorithm to show that
||Wk+1|| < /€||(Xk+1,yk+17zk+1) _ (Xk,yk, zk)”7

for some wkt1 € QU (xkt1 ykt1 zk+1) and k > 0.
7y )
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PHeBIE: Convergence Theorem (cont.)

Proof Sketch.

The proof has three steps:

@ (Sufficient decrease) Use properties of the algorithm to establish
that the sequence {F(x*, yX,z*)} e is decreasing, converges to
some F* > —oo, and that

o0
DGy, 2 — (5K, y K 2P < oo
k=1

@ (Subdifferential bound) Use properties of the algorithm to show that
||Wk+1|| < /€||(Xk+1,yk+17zk+1) _ (Xk,yk, zk)”7

for some w Tl € OW(xk+1 yk+1 zk+1) and k > 0.

© To establish convergence of {(x*, y*, z¥)}sen to a critical point, we
appeal to a result of Bolte, Sabach & Teboulle, 2014. Here the
important ingredient is that W satisfied the Kurdyka—tojasiewicz
(KL) Property which gives Cauchyness of {(x*, y*,z")}xen.

O
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The Kurdyka-tojasiewicz (KL) Property

Let f : RY — (—oc, +00] be proper and Isc. For n € (0, +oc] define
Cr={¢:[0,7) = Ry :¢(0) =0,¢'(s) >0 for all s € (0,n)}.

The function f is said to have the KL property at T € dom Of if there
exists a neighbourhood U of T and a function ¢ € C,), such that, for all

ve{ueU:f(u) < f(u)<f(m)+n},

it holds that
o' (f(u) — (1)) dist(0,0f (u)) > 1.
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The Kurdyka-tojasiewicz (KL) Property

Let f : RY — (—oc, +00] be proper and Isc. For n € (0, +oc] define
Cr={¢:[0,7) = Ry :¢(0) =0,¢'(s) >0 for all s € (0,n)}.

The function f is said to have the KL property at T € dom Of if there
exists a neighbourhood U of T and a function ¢ € C,), such that, for all

ve{ueU:f(u) < f(u)<f(m)+n},

it holds that
o' (f(u) — (1)) dist(0,0f (u)) > 1.

Why is the KL property useful? It holds for many important nonconvex
optimisation problems.

In particular, any proper, Isc, semi-algebraic function is satisfies the KL
property everywhere in its domain.
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Exploiting Block Structure

The present algorithm:
@ Alternatively minimizes w.r.t. three blocks: X, Y and Z.
@ At each iteration the “step-size” is inversely proportional to a parital
Lipschitz constant. For instance,
m JE—
> ST vkoyh)

j=1

Lx(yk,zk) =2

[e'e]
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Exploiting Block Structure

The present algorithm:
@ Alternatively minimizes w.r.t. three blocks: X, Y and Z.

@ At each iteration the “step-size” is inversely proportional to a parital
Lipschitz constant. For instance,
m

> ST vkoyh)

j=1

Lx(yk,zk) =2

[e'e]

When X or Y has separable structure, they can be decomposed as
X=XixXox---xXy, Y=EY1XYax---XYpg.

@ Algorithm variant: alternatively minimizes w.r.t. (N + M + 1)-blocks.
@ The jth “sub-block”, X;, has partial Lipschitz constant

| (s

Xilloo

* More sub-blocks — small sub-blocks — small constant — larger step-size.

@ Sub-blocks can be updated sequentially or in parallel. In both cases, an
analogous convergence theorem holds (see the paper for details).
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Explaining Maiden & Rodenburg

In our framework, we can interpret Maiden & Rodeburg's algorithm as
alternating minimisation w.r.t. the blocks (in order)

X17Y1527X27Y2;25X37Y3727"'aX17Y1725"'

where sub-blocks X; and Y; correspond to restrictions related to the
support of the jth exit wave.
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Explaining Maiden & Rodenburg

In our framework, we can interpret Maiden & Rodeburg's algorithm as
alternating minimisation w.r.t. the blocks (in order)

X17Y1527X27Y2;25X37Y3727"'aX17Y1725"'

where sub-blocks X; and Y; correspond to restrictions related to the
support of the jth exit wave

Moreover, Maiden & Rodenburg's update rules:

P'*( _Rsu')) ' . Y *( + s{}])
7”3 c— R, u(f!/j(r)—f.!'l;(l')} PJ+1(1')—P;(I'}+,37|O( TR,z

are what is obtain by by taking X = Y = C™*™. Note that the
“normalisations” are precisely the partial Lipschitz constants!

0}.4(D)=0y(r)+a WO (D).
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Explaining Thibault et al.

If it were not a difference-map algorithm, Thibault et al. could be interpreted
as the two block alternating proximal linearisation minimisation of:

Initialization. Choose (x°,y°,2°) € X x Y x Z.
General Step. (k=0,1,...)

1. Select (1 y* ) e argmin F(x,y,2z"),
(x,y)EXXY
2. Select 2 € argmin F(x*, y 1 2).
zeZ

However Step. 1 is not so easy to solve:

P — )

0m = ~ 7
« TP -1 %
R Y07+ iy +xy)
poy=o T (8)
3510 + 1)

In the event the probe P is already known, the overlap
projection is given by (6), where O is computed with Eq. (7). If P
also needs to be retrieved, both Eqgs. (7) and (8) need to be
simultaneously solved. While the system cannot be decoupled
analytically, applying the two equations in turns for a few
iterations was observed to be an efficient procedure to find the
minimum. Within the reconstruction scheme, initial guesses for P
and O are readilv available from the previous iteration—apart
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Explaining Thibault et al.

If it were not a difference-map algorithm, Thibault et al. could be interpreted
as the two block alternating proximal linearisation minimisation of:

Initialization. Choose (x°,y°,2°) € X x Y x Z.
General Step. (k=0,1,...)

1. Select (1 y* ) e argmin F(x,y,2z"),
(x,y)EXXY
2. Select 2 € argmin F(x*, y 1 2).
zeZ

So the actual computation is the following heuristic approximation to 1.:

Input. (X°,9°) := (x*,y*) e X x Y,z*, and L € N.
General Step. (/ =0,1,...,(L—1))

la. Select " e argmin F(x,§',2Y),
xeX
1b. Select P e argmin F(8'1,y, 2),
yeyY

In our framework, this is alternating minimisation w.r.t. the blocks (in order)
XY X, Y, . X, Y, Z.X. Y. X, Y, ... X, Y, Z,....
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Concluding Remarks and Ongoing Work

In summary:

@ We presented a ptychography algorithm with a clear mathematical
framework.

@ Under practically verifiable assumption, it is provably convergent to
critical points of a function V.

@ The flexibility of the framework allows interpretation of current
state-of-the-art ptychography algorithms.
Ongoing and future work:
@ Is there a useful characterisation of the critical points of of W?

@ Can the algorithm structure be exploited on specific architectures?

For further details see:

Proximal Heterogeneous Block Implicit-Explicit Method and Application
to Blind Ptychographic Diffraction Imaging with R. Hesse, D.R. Luke and
S. Sabach. SIAM J. on Imaging Sciences, 8(1):426-457 (2015).
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